Predicting the phase behavior of nitrogen + n-alkanes for enhanced oil recovery from the SAFT-VR approach: examining the effect of the quadrupole moment.

نویسندگان

  • Honggang Zhao
  • Pedro Morgado
  • Alejandro Gil-Villegas
  • Clare McCabe
چکیده

The phase behavior of nitrogen + n-alkanes is studied within the framework of the statistical associating fluid theory for potentials of variable range (SAFT-VR). The effect of the quadrupole moment of nitrogen on the phase behavior is considered through an extension of the SAFT-VR equation that includes an additional contribution to the Helmholtz free energy due to quadrupolar interactions. A significant improvement in the description of the phase diagram of the binary mixtures of nitrogen with different n-alkanes is obtained with the new approach when compared to predictions from the original SAFT-VR EOS (i.e., without the quadrupolar term). The experimental value for the quadrupole moment of nitrogen is used in the new equation; thus, no additional parameters are employed. Given the nonideal nature of the binary mixtures, a binary interaction parameter is needed to describe the full-phase diagram and high-pressure critical lines of these systems; however, this can be fitted to a single system and successfully used to predict the phase behavior of other binary mixtures without additional fitting. Furthermore, only a single, transferable, cross-energy parameter is required when the quadrupolar term is considered, whereas a cross-range parameter is also needed with the original SAFT-VR approach. The inclusion of the quadrupolar term in the equation of state therefore reduces the need to use effective parameters by explicitly including at the molecular level interactions due to the quadrupole moment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the phase behavior of H2S+n-alkane binary mixtures using the SAFT-VR+D approach.

A statistical associating fluid theory for potential of variable range has been recently developed to model dipolar fluids (SAFT-VR+D) [Zhao and McCabe, J. Chem. Phys. 2006, 125, 104504]. The SAFT-VR+D equation explicitly accounts for dipolar interactions and their effect on the thermodynamics and structure of a fluid by using the generalized mean spherical approximation (GMSA) to describe a re...

متن کامل

Predicting mixture phase equilibria and critical behavior using the SAFT-VRX approach.

The SAFT-VRX equation of state combines the SAFT-VR equation with a crossover function that smoothly transforms the classical equation into a nonanalytical form close to the critical point. By a combinination of the accuracy of the SAFT-VR approach away from the critical region with the asymptotic scaling behavior seen at the critical point of real fluids, the SAFT-VRX equation can accurately d...

متن کامل

Predicting the High-Pressure Phase Equilibria of Binary Mixtures of Perfluoro-n-alkanes + n-Alkanes Using the SAFT-VR Approach

The phase behavior of perfluoro-(n)-alkane + (n)-alkane binary mixtures is of particular interest given their unexpected large positive deviations from Raoult’s law. Binary mixtures of perfluoromethane + (n)-alkanes from methane to heptane are studied here, illustrating the continuous change in phase behavior from type II to type III that these systems exhibit. Some symmetrical systems that dis...

متن کامل

Application of Crossover Theory to the SAFT-VR Equation of State: SAFT-VRX for Pure Fluids

The molecular-based SAFT equation of state has proven to be very versatile in the prediction of fluid phase equilibria. However, in common with all analytic equations of state, SAFT exhibits classical behavior in the critical region rather than the nonanalytical, singular behavior seen in real fluids. As a result, accurate agreement over the whole phase diagram cannot be obtained and must be lo...

متن کامل

Predicting the High-Pressure Phase Equilibria of Methane + n-Hexane Using the SAFT-VR Approach

In a recent paper we predicted the fluid-phase equilibria of n-butane + n-alkane binary mixtures using the statistical associating fluid theory for chain molecules with attractive potentials of variable range (SAFTVR). Now we focus on the methane + n-hexane system, again using the SAFT-VR approach. The methane + n-hexane system exhibits type V phase behavior, in which partial miscibility of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 47  شماره 

صفحات  -

تاریخ انتشار 2006